Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1
نویسندگان
چکیده
Late-onset neurodegenerative diseases are characterized by neurological symptoms and progressive neuronal death. Accumulating evidence suggests that neuronal dysfunction, rather than neuronal death, causes the symptoms of neurodegenerative diseases. However, the mechanisms underlying the dysfunction that occurs prior to cell death remain unclear. To investigate the synaptic basis of this dysfunction, we employed in vivo two-photon imaging to analyse excitatory postsynaptic dendritic protrusions. We used Sca1(154Q/2Q) mice, an established knock-in mouse model of the polyglutamine disease spinocerebellar ataxia type 1 (SCA1), which replicates human SCA1 features including ataxia, cognitive impairment, and neuronal death. We found that Sca1(154Q/2Q) mice exhibited greater synaptic instability than controls, without synaptic loss, in the cerebral cortex, where obvious neuronal death is not observed, even before the onset of distinct symptoms. Interestingly, this abnormal synaptic instability was evident in Sca1(154Q/2Q) mice from the synaptic developmental stage, and persisted into adulthood. Expression of synaptic scaffolding proteins was also lower in Sca1(154Q/2Q) mice than controls before synaptic maturation. As symptoms progressed, synaptic loss became evident. These results indicate that aberrant synaptic instability, accompanied by decreased expression of scaffolding proteins during synaptic development, is a very early pathology that precedes distinct neurological symptoms and neuronal cell death in SCA1.
منابع مشابه
O-42: Expansion of CAG Repeats in theSpinocerebellar Ataxia Type 1 (SCA1) Gene inIdiopathic Oligozoospermia Patients
Background: The lengths of CAG repeats in two spinocerebellar ataxia genes, SCA1 and SCA3, were analyzed to determine whether such repeats exist in higher numbers in infertile males. Materials and Methods: Blood samples were collected from healthy controls, oligozoospermia patients, and azoospermia patients. DNA fragments containing target CAG repeats were amplified by PCR with template DNA pur...
متن کاملReactive astrocytosis and glial glutamate transporter clustering are early changes in a spinocerebellar ataxia type 1 transgenic mouse model.
Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disorder caused by an expanded CAG trinucleotide repeats within the coding sequence of the ataxin-1 protein. In the present study, we used a conditional transgenic mouse model of SCA1 to investigate very early molecular and morphological changes related to the behavioral phenotype. In mice with neural deficits detected by rotarod perfo...
متن کاملMotor and Cerebellar Architectural Abnormalities during the Early Progression of Ataxia in a Mouse Model of SCA1 and How Early Prevention Leads to a Better Outcome Later in Life
Exposing developing cerebellar Purkinje neurons (PNs) to mutant Ataxin1 (ATXN1) in 82Q spinocerebellar ataxia type 1 (SCA1) mice disrupts motor behavior and cerebellar climbing fiber (CF) architecture from as early as 4 weeks of age. In contrast, if mutant ATXN1 expression is silenced until after cerebellar development is complete, then its impact on motor behavior and cerebellar architecture i...
متن کاملSCA7 Knockin Mice Model Human SCA7 and Reveal Gradual Accumulation of Mutant Ataxin-7 in Neurons and Abnormalities in Short-Term Plasticity
We targeted 266 CAG repeats (a number that causes infantile-onset disease) into the mouse Sca7 locus to generate an authentic model of spinocerebellar ataxia type 7 (SCA7). These mice reproduced features of infantile SCA7 (ataxia, visual impairments, and premature death) and showed impaired short-term synaptic potentiation; downregulation of photoreceptor-specific genes, despite apparently norm...
متن کاملDynamics of calcium and its roles in the dendrite of the cerebellar Purkinje cell.
The calcium ion (Ca2+) serves as an important cellular messenger with spatio-temporally highly dynamic patterns. Not only Ca2+ entering from the plasma membrane but also Ca2+ released from intracellular store sites play crucial roles in neurons as well as in other cell types. The cerebellar Purkinje cell shows a variety of spatio-temporal Ca2+ dynamics in its rich arborization, and the Ca2+ rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015